Home Search My Library
Macromolecule-Metal Complexes

Macromolecule-Metal Complexes

Author: Francesco Ciardelli E. Tsuchida Dieter Wöhrle
Publisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Publication Date: 01 Jun 1996
ISBN-13: 9783540593836
Bookstore 1






Description


The first concise overview on the topic, spanning the spectrum from fundamentals to new application areas. The synthesis, kinetics and thermodynamics of these complexes are covered in detail, while much emphasis is placed on special properties such as gas transport, charge transport, catalysis and light-induced processes. Furthermore, the authors treat the actual working areas for new application methods.
In all, a very helpful tool for polymer and materials scientists, as well as organic and physical chemists working in these fields.


Table of Contents


1 Introduction and Fundamental Aspects.- 1.1 Macromolecular Metal Complexes.- 1.2 Types, Formation and Structural Features of MMC.- 1.3 Properties and Application of MMC.- 1.4 Aim of the Book.- 2 Synthesis and Structure of Macromolecular Metal Complexes.- 2.1 Main Structural Principles of Formation and Characteristics of Macromolecular Metal Complexes.- 2.1.1 Classification, Main Requirements and Principles of Macroligands for the Formation of Macromolecular Metal Complexes.- 2.1.1.1 Main Requirements of Macroligands.- 2.1.1.2 Classification of Macroligands.- 2.1.1.3 Methods of Polymer Carrier Functionalization.- 2.1.1.4 Natural Polymers as Macroligands.- 2.1.2 General Principles of MMC Formation.- 2.1.3 Main Approaches for Calculation of Rate Constants of MMC.- 2.1.4 Cooperative Effects During MMC Formation.- 2.1.5 Thermodynamic Description of Macromolecular Metal Complex Formation.- 2.1.6 Main Transformations of Macroligands and Transition Metal Compounds During Complex Formation.- 2.1.7 Methods for Characterization of Composition and Structure of MMC.- 2.2 Type I: Metal Complexes Bound to Macromolecular Carriers via Ligands or Metal Ions.- 2.2.1 Metal Complexes Coordinatively Bound to both Synthetic Organic Polymers and Inorganic Macromolecular Compounds.- 2.2.1.1 MXn Binding with Polyvinylpyridines.- 2.2.1.2 Interaction of MXn with Polyethyleneimine and its Derivates.- 2.2.1.3 MMC Formed by the Use of Oxygen-Containing Donor Centers.- 2.2.1.4 Macrocomplexes with Phosphorous-Containing Ligands.- 2.2.1.5 Sulfur-Containing Macroligands in Coordination Reactions.- 2.2.1.6 Metal Complexes Coordinatively Bound to Synthetic Inorganic Macromolecular Compounds.- 2.2.2 Metal Complexes Covalently and Ionically Bound to Synthetic and Inorganic Macromolecular Compounds.- 2.2.2.1 Specific Features of MXn Binding with Polyvinyl Alcohol.- 2.2.2.2 MMC Derived from Polyacids.- 2.2.2.3 Transition Metal Ions Binding with Polyamino Acids.- 2.2.2.4 Covalent Binding with Inorganic Ligands.- 2.2.3 Macromolecular Metal Chelates.- 2.2.3.1 Molecular Metal Chelates.- 2.2.3.2 Intracomplex Compounds.- 2.2.3.3 MMCh as Macrocyclic Complexes.- 2.2.3.4 Interpolymer Metal Chelates.- 2.2.3.5 Metal Chelates on the Surface of Oxides and Mixed-Type Polymers.- 2.2.4 Polymeric ?-Complexes of Transition Metal Ions.- 2.2.5 Macrocomplexes with Natural Polymers.- 2.2.6 Polymerization and Copolymerization of Metal-Containing Monomers as a Way for MMC Synthesis.- 2.3 Type II: Metal Complexes and Metals as Part of a Polymer Chain or Network.- 2.3.1 Ligand of a Metal Complex as Part of a Polymer Chain or Network (Polymeric Metal Complexes).- 2.3.1.1 Noncyclic Organic Ligands.- 2.3.1.2 Cyclic Organic Ligands.- 2.3.2 Ligand and Metal as Part of a Polymer Chain or Network (Metal Coordination Polymers).- 2.3.2.1 Inorganic Coordination Polymers.- 2.3.2.2 Organic Coordination Polymers.- 2.3.3 Homochain Polymers with Covalent Bonds Between Metals (Homometallic Polymers).- 2.3.4 Heterochain Polymers with Covalent Bonds Between Metals and Another Element (Heterometallic Polymers).- 2.3.5 Cofacial Stacked Polymeric Metal Complexes.- 2.3.5.1 Covalent/Covalent Bonds Between Central Metal Ions.- 2.3.5.2 Covalent/Coordinative Bonds Between Central Metal Ions.- 2.3.5.3 Coordinative/Coordinative Bonds Between Central Metal Ions.- 2.3.5.4 Self-Organization, Discotic Crystalline Liquids.- 2.3.6 Metallocenes as Part of a Polymer Chain (Polymetallocenes).- 2.4 Type III: Metal Complexes, Zero-Valent Metals and Metal Clusters Physically Connected with Macromolecular Compounds.- 2.4.1 Combination with Organic Polymers.- 2.4.1.1 Metal Complexes.- 2.4.1.2 Metal Clusters.- 2.4.2 Combination with Inorganic High Molecular Systems.- 2.4.2.1 Metal Complexes.- 2.4.2.2 Metal Clusters.- 3 Polymer Metal Complexes in Living Systems.- 3.1 Introduction.- 3.2 Overview of Ligands Present in Living Systems.- 3.2.1 General Coordination of Behaviour of Ligands.- 3.2.2 Systematic Overview of Ligands that Bind to Metals in Biological Systems.- 3.3 Metal Ions Occurring in Biological Systems.- 3.3.1 General Aspects.- 3.3.2 Valency and Coordination Numbers of Metal Ions.- 3.4 Applications of Metal Complexes in Living Systems.- 3.4.1 Transport and Storage of Metal Ions.- 3.4.2 Transport and Storage of Small Molecules by Macromolecules.- 3.4.3 Catalysis by Metal Ions in Biomacromolecules.- 3.4.4 Medicinal Functions of Added Metal Ions In Vivo.- 3.4.5 Non-Biology Applications of Bioinorganic Principles in Polymers.- 3.5 Conclusion.- 4 Electronic Processes in Macromolecular Metal Complexes.- 4.1 Ion-Conductive Materials of Macromolecules.- 4.1.1 Introduction.- 4.1.2 Advancement in Ion-Conductive Macromolecules.- 4.1.2.1 Macromolecules and Liquid Electrolytes.- 4.1.2.2 Poly(oxyethylene)-Based Electrolytes.- 4.1.2.3 Single Ion-Conductors.- 4.1.3 Dissociation of Inorganic Salts in Macromolecules.- 4.1.3.1 Ion-Dipole Interaction in Macromolecules.- 4.1.3.2 Dielectric Constant for Ion Dissociation.- 4.1.3.3 Association States of Ions in Macromolecular Solids.- 4.1.3.4 Development of New Salts.- 4.1.3.5 Composite Systems (Molton Salts/Macromolecules).- 4.1.4 Ion-Conduction Mechanism in Macromolecular Systems.- 4.1.4.1 Role of Segmental Motion of Macromolecules for Ion Conduction.- 4.1.4.2 Phase Diagrams of (Macromolecule/Salt) Composites.- 4.1.4.3 Ions with Different Size and Ion-Oligoether Interaction.- 4.1.5 Performance of Ion-Conducting Macromolecules.- 4.1.5.1 Lithium Secondary Batteries.- 4.1.5.2 Electrochromic Displays.- 4.1.5.3 Molecular Devices.- 4.1.6 Conclusion.- 4.2 Transport Phenomena and Separation of Small Molecules.- 4.2.1 Facilitated Transport with Metal Complexes as a Carrier.- 4.2.2 Chemically Specific and Reversible Binding of Small Molecules in Solid MMCs.- 4.2.3 Solid MMC Membranes for Facilitated Transport and Gas Separation.- 4.2.4 Surface Diffusion of Oxygen in Porous MMC Membranes.- 4.3 Assembled Porphyrins and Oxygen Coordination.- 4.3.1 Introduction.- 4.3.2 Assembled Porphyrin Systems in Solid State.- 4.3.2.1 Crystal Structure of Porphyrin.- 4.3.2.2 Structure of Polyporphyrins and Electron Transfer.- 4.3.3 Self-Assembly of Amphiphilic Porphyrins in Aqueus Medium.- 4.3.3.1 Morphology and Structure of Porphyrin Assembly.- 4.3.3.2 Electronic Process of Porphyrin Fiber.- 4.3.3.3 Octopus-Porphyrin Assembly.- 4.3.4 Self-Assembled Lipidporphyrin Vesicle and Oxygen Coordination.- 4.3.4.1 Microstructure of Lipidporphyrin Vesicle.- 4.3.4.2 Porphyrin Arrangement in Lipidporphyrin Vesicle.- 4.3.4.3 02-Coordination Property of Lipidporphyrin Vesicle.- 4.3.5 Lipidheme Microsphere as Oxygen Carrier.- 4.3.5.1 Physicochemical Properties of Lipidheme Microsphere.- 4.3.5.2 02-Solubility of Lipidheme Microsphere.- 4.3.5.3 Biocirculation System as 02-Carrier.- 4.4 Catalysis in Macromolecular Metal Complexes.- 4.4.1 Gerneral Concepts.- 4.4.2 Organic Polymer-Supported Catalysts Based on Mononuclear Transition Metal Complexes.- 4.4.2.1 Same Structure as in Monomeric Analog.- 4.4.2.2 Different Structure from Monomeric Analogs.- 4.4.3 Macromolecular Systems Involving Transition Metal Clusters.- 4.4.4 Transition Metal Complexes on Inorganic Supports.- 4.4.5 Conclusion.- 4.5 Recent Advances in Oxidative Polymerization Through Multielectron Transfer.- 4.5.1 Introduction.- 4.5.2 Multielectron Transfer of Metal Complexes and Molecular Conversions.- 4.5.2.1 Multielectron Transfer and Polynuclear Complex.- 4.5.2.2 Reduction of Oxygen Through Multielectron Transfer.- 4.5.3 Oxidative Polymerization of Phenols.- 4.5.3.1 Oxidative Polymerization.- 4.5.3.2 Catalytic Mechanism of Copper-Amine Complexes.- 4.5.4Oxidative Polymerization of Disulfides.- 4.5.4.1 Oxidative Polymerization.- 4.5.4.2 Effect of Substituents on Polymerization Behaviors.- 4.5.4.3 One-Step, Two-Electron Transfer of Vanadium Complex.- 4.5.5 Oxidative Polymerization of Benzene.- 4.5.6 Conclusion.- 5 Photoinduced Electron Transport of Macromolecular Metal Complexes.- 5.1 Photoinduced Electron Transport in Solution.- 5.1.1 Determination of Rate and Mechanism.- 5.1.2 Photoinduced Electron Transport of Polymer-Pendant Ru(bpy)32+.- 5.1.3 Photoinduced Electron Transport and Energy Transfer in Polymer-Pendant Porphyrin Complexes.- 5.1.4 Photoinduced Electron Transport Between Ru(bpy)32+ and Colloidal Particles.- 5.1.5 Photoinduced Electron Transport in Molecular Assemblies.- 5.2 Photoinduced Electron Transport at Solid/Liquid Interface.- 5.2.1 Photoelectrochemical Electron Transport with Ru(bpy) 32+ Excitation Center.- 5.2.2 Photoinduced Electron Transport with Macrocyclic Metal Complexes.- 5.2.3 Photoelectrochemical Electron Transport with Semiconductor Excitation Center Coupled with Metal Complexes Working as Catalysts Charge Mediators.- 5.2.3.1 Charge Transport in a Polymer Membrane Containing Metal Complexes.- 5.2.3.2 Catalytic Activities of Metal Complexes Incorporated into a Polymer Membrane to be used in Conjunction with Photoexcitation Center.- 5.3 Conduction and Photoinduced Behavior in Solid Macromolecular Metal Complexes.- 5.3.1 Electrical Conductivity.- 5.3.2 Photoconductivity.- 5.3.3 Photovoltaic Devices.- 5.3.4 Nonlinear Optical Properties.- 5.3.5 Hole Burning.- 6 Outlook.- 6.1 Structure of MMC.- 6.2 Properties and Applications of MMC.- 6.3 Conclusion.






Related Books